Ниобий. Свойства ниобия

Существует довольно большое количество элементов, которые при соединении с другими веществами образуют сплавы с особыми эксплуатационными качествами. Примером можно назвать ниобий – элемент, который получил сначала название «колумбий» (по названию реки, где он впервые найден), но после был переименован. Ниобий – металл с довольно необычными свойствами, о которых далее поговорим подробнее.

Получение элемента

При рассмотрении свойств ниобия следует отметить, что содержание этого металла на тонну породы относительно невелико, составляет примерно 18 грамм. Именно поэтому после его открытия было предпринято довольно много попыток получения металла искусственным путем. За счет близкого химического состава это вещество достаточно часто добывается вместе с танталом.

Месторождения ниобия расположены практически по всему миру. Примером назовем рудники в Конго, Руанде, Бразилии и в многих других странах. Однако этот элемент нельзя назвать распространенным, во многих регионах он практически не встречается даже в малой концентрации.

Относительно небольшая концентрация вещества в земной породе усугубляется сложностями, возникающими при его получении из концентрата. Стоит учитывать, что ниобий НБШ получить можно только из породы, которая насыщена танталом. Особенностями производственного процесса назовем нижеприведенные моменты:

  1. Для начала на завод поставляется концентрированная руда, которая проходит несколько этапов очистки. При производстве ниобия проводится разделение получаемой руды на чистые элементы, среди которых и тантал.
  2. Завершающий процесс переработки заключается в рафинировании металла.

Несмотря на возникающие сложности при добыче и переработке рассматриваемой руды, с каждым годом объем производства рассматриваемого сплава существенно возрастает. Это связано с тем, что металл обладает исключительными эксплуатационными качествами и получил большое распространение в самых различных отраслях промышленности.

Оксиды ниобия

Рассматриваемый химический элемент может стать основой различных соединений. Самым распространенным можно назвать пятиокись ниобия. Среди особенностей данного соединения можно отметить нижеприведенные моменты:

  1. Оксид ниобия представлен белым кристаллическим порошком, который имеет кремовый оттенок.
  2. Вещество не растворяется в воде.
  3. Получаемое вещество сохраняет свою структуру при смешивании с большинства кислотами.

К особенностям пентаоксида ниобия также можно отнести следующие свойства:

  1. Повышенная прочность.
  2. Высокая тугоплавкость. Вещество способно выдерживать температуру до 1490 градусов Цельсия.
  3. При нагреве поверхность окисляется.
  4. Реагирует на воздействие хлора, может восстанавливаться водородом.

Гидроксид ниобия в большинстве случаев применяется для получения высоколегированных марок стали, которые обладают довольно привлекательными эксплуатационными качествами.

Физические и химические свойства

Ниобий имеет химические свойства схожие с химическими свойствами тантала. Рассматривая основные характеристики ниобия, нужно уделить внимание нижеприведенным моментам:

  1. Устойчивость к воздействию различных видов коррозии. Сплавы, получаемые при внедрении данного элемента в состав, обладают высокими коррозионностойкими качествами.
  2. Рассматриваемый химический элемент демонстрирует высокий показатель температуры плавления. Как показывает практика, у большинства сплавов температура плавления более 1 400 градусов Цельсия. это усложняет процесс обработки, но делает металлы незаменимы в различных сферах деятельности.
  3. Основные физические свойства также характеризуются легкостью сваривания получаемых сплавов.
  4. При отрицательных температурах структура элемента остается практически неизменной, что позволяет сохранить эксплуатационные свойства металла.
  5. Особое строение атома ниобия определяет сверхпроводящие качества материала.
  6. Атомная масса составляет 92,9, валентность зависит от особенностей состава.

Основным достоинством вещества считается именно тугоплавкость. Именно поэтому он стал применяться в самых различных отраслях промышленности. Плавление вещества проходит при температуре около 2 500 градусов Цельсия. Некоторые сплавы и вовсе плавятся при рекордной температуре 4 500 градусов Цельсия. Плотность вещества достаточно высокая, составляет 8,57 грамма на кубический сантиметр. Стоит учитывать, что металл характеризуется парамагнитностью.

На кристаллическую решетку не оказывают воздействия следующие кислоты:

  1. серная;
  2. соляная;
  3. фосфорная;
  4. хлорная.

Не оказывает воздействие на металл и водные растворы хлора. При определенном воздействии на металл на его поверхности образуется диэлектрическая оксидная пленка. Именно поэтому металл стал использоваться при производстве миниатюрных высокоемкостных конденсаторов, которые также изготавливаются из более дорогостоящего тантала.

Применение ниобия

Изготавливаются самые различные изделия из ниобия, большая часть которых связана с выпуском авиационной техники. Примером можно назвать применение ниобия в изготовлении деталей, которые устанавливаются при сборе ракет или самолетов. Кроме этого, можно выделить следующее применение данного элемента:

  1. Производство элементов, из которых изготавливают радарные установки.
  2. Как ранее было отмечено, для получения более дешевых емкостных электрических конденсаторов может применяться рассматриваемый сплав.
  3. Катоды, аноды из фольги тоже изготавливают при применении рассматриваемого элемента, что связано с высокой жаропрочностью.
  4. Часто можно встретить конструкции мощных генераторных ламп, которые имеют внутри сетку. Для того чтобы эта сетка выдержала воздействие высокой температуры ее изготавливают из рассматриваемого сплава.

Высокие физические и химические качества определяют применение ниобия при производстве труб для транспортировки жидких металлов. Кроме этого, сплавы применяются для получения контейнеров самого различного предназначения.

Сплавы с ниобием

Рассматривая подобные сплавы следует учитывать, что часто этот элемент применяется для производства феррониобия. Этот материал получил широкое применение в литейных отраслях индустрии, а также при изготовлении электронных покрытий. В состав входит:

  1. железо;
  2. ниобий с танталом;
  3. кремний;
  4. алюминий;
  5. углерод;
  6. сера;
  7. фосфор;
  8. титан.

Концентрация основных элементов может варьироваться в достаточно большом диапазоне, от чего и зависят эксплуатационные качества материала.

Альтернативным сплавов феррониобия можно назвать ниобий 5ВМЦ. При его получении в качестве легирующих элементов используется вольфрам, цирконий и молибден. В большинстве случаев этот спав используется для производства полуфабрикатов.

В заключение отметим, что ниобий в некоторых странах применяется при производстве монет. Это связано с достаточно высокой стоимостью материала. При массовом выпуске сплавов, которые в качестве основного элемента имеют в составе ниобий, создаются своеобразные слитки.

Ниобий

НИО́БИЙ -я; м. [лат. Niobium] Химический элемент (Nb), твёрдый тугоплавкий и ковкий металл серовато-белого цвета (используется при производстве химически стойких и жаростойких сталей).

Нио́бийный; нио́биевый, -ая, -ое.

нио́бий

(лат. Niobium), химический элемент V группы периодической системы. Назван по имени Ниобы - дочери мифологического Тантала (близость свойств Nb и Ta). Светло-серый тугоплавкий металл, плотность 8,57 г/см 3 , t пл 2477°C, температура перехода в сверхпроводящее состояние 9,28 K. Химически очень стоек. Минералы: пирохлор, колумбит, лопарит и др. Компонент химически стойких и жаростойких сталей, из которых изготовляют детали ракет, реактивных двигателей, химическую и нефтеперегонную аппаратуру. Ниобием и его сплавами покрывают тепловыделяющие элементы (ТВЭЛы) ядерных реакторов. Станнид Nb 3 Sn, германид Nb 3 Ge, сплавы ниобия с Sn, Ti и Zr используют для изготовления сверхпроводящих соленоидов (Nb 3 Ge - сверхпроводник с температурой перехода в сверхпроводящее состояние 23,2 K).

НИОБИЙ

НИО́БИЙ (лат. Niobium, от имени Ниобы (см. НИОБА) ), Nb (читается «ниобий»), химический элемент с атомным номером 41, атомная масса 92,9064. Природный ниобий состоит из одного стабильного изотопа 93 Nb. Конфигурация двух внешних электронных слоев 4s 2 p 6 d 4 5s 1 . Cтепени окисления +5, +4, +3, +2 и +1 (валентности V IV, III, II и I). Расположен в группе VВ, в 5 периоде периодической системы элементов.
Радиус атома 0,145 нм, радиус иона Nb 5+ - от 0,062 нм (координационное число 4) до 0,088 нм (8), иона Nb 4+ - от 0,082 до 0,092 нм, иона Nb 3+ - 0,086 нм, иона Nb 2+ - 0,085 нм. Энергии последовательной ионизации - 6,88, 14,32, 25,05, 38,3 и 50,6 эВ. Работа выхода электронов 4,01 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,6.
История открытия
Открыт в 1801 Ч. Хатчетом (см. ХАТЧЕТ Чарлз) . Исследуя черный минерал, присланный из Америки, он выделил оксид нового элемента, который он назвал колумбием, а содержащий его минерал - колумбитом. Через год из того же минерала А. Г. Экеберг (см. ЭКЕБЕРГ Андерс Густав) выделил еще один оксид, который назвал танталом (см. ТАНТАЛ (химический элемент)) . Свойства колумбия и Ta были очень близки, и их очень долго рассматривали как один элемент. В 1844 Г. Розе (см. РОЗЕ (немецкие ученые, братья)) доказал, что это два разных элемента. Он сохранил название тантал, а другой назвал ниобий. Только в 1950 ИЮПАК (Всемирная организация химиков) окончательно присвоила элементу №41 название ниобий. Металлический Nb первым получил в 1866 К. Бломстранд (см. БЛОМСТРАНД Кристиан Вильгельм) .
Нахождение в природе
Содержание в земной коре 2·10 -3 % по массе. В свободном виде ниобий не встречается, в природе сопутствует танталу. Из руд наиболее важны колумбит-танталит (см. КОЛУМБИТ) (Fe,Mn)(Nb,Ta) 2 O 6 , пирохлор (см. ПИРОХЛОР) и лопарит (см. ЛОПАРИТ) .
Получение
Около 95% Nb получают из пирохлоровых, колумбит-танталитовых и лопаритовых руд. Руды обогащают гравитационнымми методами и флотацией (см. ФЛОТАЦИЯ) . Концентраты с содержанием Nb 2 O 5 до 60% перерабатывают до феррониобия (сплава железа и ниобия), чистого Nb 2 O 5 или NbCl 5 . Восстанавливают ниобий из его оксида, фторида или хлорида алюмино- или карботермией. Особо чистый ниобий получают высокотемпературным восстановлением летучего NbCl 5 водородом.
Полученный порошок ниобия брикетируют, спекают в вакууме в электродуговых или электроннолучевых печах.
Физические и химические свойства
Ниобий - блестящий серебристо-серый металл с кубической объемно центрированной кристаллической решеткой типа a-Fe, а = 0,3294 нм. Температура плавления 2477°C, кипения 4760°C, плотность 8,57 кг/дм 3 .
Химически ниобий довольно устойчив. При прокаливании на воздухе окисляется до Nb 2 О 5 . Для этого оксида описано около 10 кристаллических модификаций. При обычном давлении стабильна b-форма Nb 2 О 5 . При сплавлении Nb 2 О 5 с различными оксидами получают ниобаты: Ti 2 Nb 10 О 29 , FeNb 49 О 124 . Ниобаты могут рассматриваться как соли гипотетических ниобиевых кислот. Они делятся на метаниобаты MNbO 3 , ортониобаты M 3 NbO 4 , пирониобаты M 4 Nb 2 O 7 или полиниобаты M 2 O·n Nb 2 O 5 (M - однозарядный катион, а n = 2-12). Известны ниобаты двух- и трехзарядных катионов. Ниобаты реагируют с HF, расплавами гидрофторидов щелочных металлов (KHF 2) и аммония (см. АММОНИЙ (в химии)) . Некоторые ниобаты с высоким отношением M 2 O/Nb 2 O 5 гидролизуются:
6Na 3 NbO 4 + 5H 2 O = Na 8 Nb 6 O 19 + 10NaOH
Ниобий образует NbО 2 , NbО и ряд оксидов, промежуточных между NbО 2,42 и NbО 2,50 и близких по структуре к b-форме Nb 2 О 5 .
С галогенами (см. ГАЛОГЕНЫ) Nb образует пентагалогениды NbHal 5 , тетрагалогениды NbHal 4 и фазы NbHal 2,67 -NbHal 3+x , в которых имеются группировки Nb 3 или Nb 2 . Пентагалогениды ниобия легко гидролизуются водой. Температуры плавления пентахлорида, пентабромида и пентаиодида ниобия - 205, 267,5 и 310°C. Выше 200-250°C эти пентагалогениды летучи.
В присутствии паров воды и кислорода NbCl 5 и NbBr 5 образуют оксигалогениды NbOCl 3 (NbOBr 3) - рыхлые ватообразные вещества.
При взаимодействии Nb и графита образуются карбиды Nb 2 C и NbC, твердые жаропрочные соединения. В системе Nb - N существуют несколько фаз переменного состава и нитриды Nb 2 N и NbN. Сходным образом ведет себя Nb в системах с фосфором и мышьяком. При взаимодействии Nb с серой получены сульфиды: NbS, NbS 2 и NbS 3 . Синтезированы двойные фториды Nb и K (Na) - K 2 .
Применение
50% производимого ниобия используется для микролегирования сталей, 20-30% - для получения нержавеющих и жаропрочных сплавов. Интерметаллиды ниобия (Nb 3 Sn и Nb 3 Ge) применяют при изготовлении соленоидов сверхпроводящих устройств. Нитрид ниобия NbN используют при изготовлении мишеней передающих телевизионных трубок. Оксиды ниобия - компоненты огнеупорных материалов, керметов, стекол с высокими коэффициентами преломления. Двойные фториды - при выделении ниобия из природного сырья, при производстве металлического ниобия. Ниобаты используются в акусто- и оптоэлектронике, как лазерные материалы.
Физиологическое действие
Соединения ниобия ядовиты. ПДК ниобия в воде 0,01 мг/л.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "ниобий" в других словарях:

    - (ново лат. niobium). Один из редких металлов, встречающийся в танталите. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. НИОБИЙ металл, встречается в виде окислов в редких минералах практического значения не имеет … Словарь иностранных слов русского языка

    - (Niobium), Nb, химический элемент V группы периодической системы, атомный номер 41, атомная масса 92,9064; металл, tпл 2477 шC. Ниобий используют для легирования сталей, получения жаропрочных, твердых и других сплавов. Ниобий открыт английским… … Современная энциклопедия

    Ниобий - (Niobium), Nb, химический элемент V группы периодической системы, атомный номер 41, атомная масса 92,9064; металл, tпл 2477 °C. Ниобий используют для легирования сталей, получения жаропрочных, твердых и других сплавов. Ниобий открыт английским… … Иллюстрированный энциклопедический словарь

    - (символ Nb), блестящий серо белый переходный химический элемент, металл. Открыт в 1801 г. Встречается, как правило, в пирохлорных рудах. Будучи мягким и ковким металлом, ниобий применяется в производстве специальных нержавеющий сталей и сплавов… … Научно-технический энциклопедический словарь

    Nb (лат. Niobium; от им. Ниобы дочери Тантала в др. греч. мифологии * a. niobium; н. Niob, Niobium; ф. niobium; и. niobio), хим. элемент V группы периодич. системы Менделеева, ат. н. 41, ат. м. 92,9064. Имеет один природный изотоп 93Nb.… … Геологическая энциклопедия

    НИОБИЙ, один из открытых химиками металлов. Толковый словарь Даля. В.И. Даль. 1863 1866 … Толковый словарь Даля

    НИОБИЙ - хим. элемент, символ Nb (лат. Niobium), ат. н. 41, ат. м. 92,90; светло серый металл, плотность 8570 кг/м3, t = 2500 °С; обладает высокой хим. стойкостью. В природе встречается в минералах совместно с танталом, разделение с которым вызывает… … Большая политехническая энциклопедия

    - (лат. Niobium) Nb, химический элемент V группы периодической системы, атомный номер 41, атомная масса 92,9064. Назван от имени Ниобы дочери мифологического Тантала (близость свойств Nb и Ta). Светло серый тугоплавкий металл, плотность 8,57… … Большой Энциклопедический словарь

    - (Niobium), Nb, хим … Физическая энциклопедия

    Сущ., кол во синонимов: 2 металл (86) элемент (159) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    - (Niobium франц. и англ., Niob нем.; хим.), Nb =:94. в Vгруппе периодической системы элементов имеются два редких металла, Н. итантал, которые относятся к ванадию подобно тому, как молибден ивольфрам к хрому; последние три металла члены… … Энциклопедия Брокгауза и Ефрона

Тантал и ниобий получают восстановлением из соединений высокой чистоты: оксидов, комплексных фтористых солей, хлоридов. Промышленные способы получения металлов можно подразделить на четыре группы:

Натриетермическое восстановление из комплексных фторидов;

Восстановление из оксидов углеродом (карботермичес - кий способ);

Восстановление из оксидов алюминия (алюминотерми - ческий способ);

Восстановление из хлоридов водородом;

Электролиз расплавленных сред.

В связи с высокой температурой плавления тантал (~3000 С) и ниобия (~2500 С) их получают в результате восстановления всеми перечисленными способами, кроме тре­тьего, в форме порошков или спекшейся губки. Задача полу­чения компактных ковких тантала и ниобия осложняется тем, что эти металлы активно поглощают газы (водород, азот, кислород), примеси которых придают им хрупкость. Поэтому спекать спрессованные из порошков заготовки или плавить их необходимо в высоком вакууме.

Натриетермический способ производства порошков тантала и ниобия

Натриетермическое восстановление комплексных фторидов K2TaF7 и K2NbF7 - первый промышленный способ получения тантала и ниобия. Его применяют и в настоящее время. Для восстановления фтористых соединений тантала и ниобия при­годны натрий, кальций и магний, имеющие высокое сродство к фтору, как видно из приведенных ниже величин:

Эл<^ент Nb Та Na Mg Са

AG298, кДж/г-атом F. . . . -339 -358 -543 -527 -582

Для восстановления используют натрий, так как фторид натрия растворим в воде и может быть отделен отмывкой от порошков тантала и ниобия, тогда как фториды магния и кальция малорастворимы в воде и кислотах.

Рассмотрим процесс на примере получения тантала. Вос­становление K2TaF7 натрием протекает с большим выделением тепла (даже при масштабах загрузки шихты до 5 кг), доста­точным для самопроизвольного течения процесса. После по­догрева шихты в одном месте до 450-500 С реакция быстро распространяется по всей массе шихты, причем температура достигает 800-900 С. Поскольку натрий плавится при 97 С, а кипит при 883 , очевидно, что в восстановлении участвуют жидкий и парообразный натрий:

K2TaF7 + 5NaW = Та + 5NaF + 2KF; K2TaF7 + 5Na(ra3) = Та + 5NaF + 2KF.

Удельные тепловые эффекты реакций (2.18) и (2.19) рав­ны 1980 и 3120кДж/кг шихты соответственно.

Восстановление ведут в стальном тигле, куда послойно загружают фторотанталат калия и кусочки натрия (~120 % от стехиометрически необходимого количества), которые наре­зают специальными ножницами. Сверху шихту засыпают слоем хлорида натрия, образующего с KF и NaF легкоплавкую смесь. Солевой расплав защищает от окисления частицы по­
рошка тантала. В наиболее простом варианте проведения процесса для возбуждения реакции стенку тигля у дна наг­ревают пламенем паяльной лампы до появления красного пят­на. Реакция быстро протекает по всей массе и заканчивает­ся за 1-2 мин. При таком осуществлении процесса вслед­ствие кратковременной выдержки продуктов при максимальной температуре (800-900 С) получаются тонкодисперсные по­рошки тантала, которые после отмывки солей содержат до 2 % кислорода.

Более крупнозернистый порошок с меньшим содержанием кислорода получают при помещении реакционного тигля в шахтную электропечь с выдержкой его в печи после оконча­ния реакции при 1000 °С.

Получающийся в результате восстановления тантал вкрап­лен в виде мелких частиц во фтористо-хлоридном шлаке, со­держащем избыточный натрий. После остывания содержимое тигля выбивают, дробят на щековой дробилке и загружают небольшими порциями в реактор с водой, где происходит "гашение" натрия и растворение основной массы солей. За­тем порошок последовательно промывают разбавленной неї (для более полной отмывки солей, растворения примеси же­леза и частично титана). Для понижения содержания оксидов тантала порошок иногда дополнительно отмывают холодной разбавленной плавиковой кислотой. Затем порошок промывают дистиллированной водой, фильтруют и сушат при 110-120 С.

Описанным выше способом с соблюдением примерно тех же режимов получают порошки ниобия восстановлением k2NbF7 натрием. Высушенные порошки ниобия имеют состав, %: Ті, Si, Fe 0,02-0,06; О около 0,5; N до 0,1; С 0,1-0,15.

Карботермический способ получения ниобия и тантала из оксидов

Этот способ был первоначально разработан для производ­ства ниобия из Nb2o5.

Ниобий может быть восстановлен из Nb2os углеродом при 1800-1900 °С в вакуумной печи:

Nb2Os + 5С = 2Nb + SCO. (2.20)

Шихта Nb205 + 5С содержит мало ниобия и даже в брикетированном состоянии имеет низкую плотность (~1,8г/см3). Вместе с тем на 1 кг шихты выде­ляется большой объем со (~0,34 м3). Эти обстоятельства делают невыгодным проведение процесса по реакции (2.20), так как производительность вакуумной печи при этом низ­кая. Поэтому процесс проводят в две стадии:

І стадия - получение карбида ниобия

Nb203 + 1С = 2NbC + 5CO; (2.2l)

П стадия - получение ниобия в вакуумных печах

Nb2Os + 5NbC = 7Nb + 5CO. (2.22)

Брикетированная шихта її стадии содержит 84,2 % (по массе) ниобия, плотность брикетов ~3 г/см3, объем образу­ющегося со 0,14 м3 на 1 кг шихты (~ в 2,5 раза меньше, чем в случае шихты Nb2o5 + sc). Это обеспечивает более высокую производительность вакуумной печи.

Существенное преимущество двустадийного процесса со­стоит также в том, что первую стадию можно проводить при атмосферном давлении в графитово-трубчатых печах сопро­тивления (рис. 29).

Для получения карбида ниобия (і стадии процесса) смесь - Nb2o5 с сажей брикетируют и брикеты нагревают в графито - вотрубчатой печи в атмосфере водорода или аргона при 1800-1900 °С (вдоль печи брикеты непрерывно продвигаются

Рис. 29. Схема графитово-трубчатой печи сопротивления:

1 - кожух; 2 - графитовая труба накала; 3 - экранирующая графитовая труба; 4- сажевая теплоизолирующая засыпка; 5 - холодильник; 6 - контактные графи­товые конусы; 7 - охлаждаемая контактная головка; 8 - люк; 9 - шины, подво­дящие ток

Из расчета пребывания их в горячей зоне 1-1,5 ч). Измель­ченный карбид ниобия смешивают в шаровой мельнице с Nb2o5, взятой с небольшим избытком (3-5 %) против необхо­димого по реакции (2.22).

Шихту прессуют в заготовки под давлением 100 МПа, ко­торые нагревают в вакуумных печах с графитовыми нагрева­телями (или вакуумных индукционных печах с графитовой трубой) при 1800-1900 С. Выдержка заканчивается при дос­тижении остаточного давления 1,3-0,13 Па.

Реакции (2.21) и (2.22) являются суммарными. Они про­текают через промежуточные стадии образования низших ок­сидов (Nt>o2 и NbO), а также карбида Nb2c. Основные реак­ции I стадии:

Nb2Os + С = 2Nb02 + СО; (2.23)

Nb02 + С = NbO + СО; (2.24)

2NbO + 3С = Nb2C + 2СО; (2.25)

Nb2C + С = 2NbC. (2.26)

Реакции п стадии:

Nb2Os + 2NbC = 2Nb02 + Nb2C + CO; (2.27)

Nb02 + 2NbC = NbO + Nb2C + CO; (2.28)

NbO + Nb2C = 3Nb + CO. (2.29)

Металлический ниобий получается по завершающей ре­акции II стадии процесса (2.29). Равновесное давление со для реакции (2.29) при 1800 °С > 1,3 Па. Следовательно, проводить процесс необходимо при остаточном давлении меньшем, чем равновесное для данной реакции (0,5- 0,13 Па).

Полученные спекшиеся пористые брикеты ниобия содер­жат, %: С 0,1-0,15; О 0,15-0,30; N 0,04-0,5. Для получе­ния компактного ковкого металла брикеты плавят в элек­тронно-лучевой печи. Другой путь состоит в получении из брикетов порошка (путем гидрирования при 450 С, измель­чения и последующего дегидрирования в вакууме), прессова­нии штабиков и их спекании в вакууме при 2300-2350 С. В процессах вакуумной плавки и спекания в вакууме кислород и углерод удаляются в составе со, а избыточный кислород в составе летучих низших оксидов.

Основные преимущества карботермического способа - вы­сокий прямой выход металла (не ниже 96 %) и применение дешевого восстановителя. Недостаток способа - сложность конструкций высокотемпературных вакуумных печей.

Карботермическим способом можно получать также тантал и сплавы ниобия с танталом.

Алюминатермический способ получения ниобия и тантала из высших оксидов

Разработанный в последние годы алюминометрический спо­соб получения ниобия восстановлением пентоксида ниобия алюминием благодаря малостадийности и простоте аппаратур­ного оформления обладает технико-экономическими преиму­ществами по сравнению с другими способами производства ниобия.

Способ основан на экзотермической реакции:

3Nb2Os + 10А1 = 6Nb + 5А1203; (2.30)

Доу = -925,3 + 0,1362т, кДж/моль Nb2o5.

Высокий удельный тепловой эффект реакции (2640 кДж/кг шихты стехиометрического состава) обеспечивает возмож­ность проведения процесса без внешнего подогрева с вы­плавкой слитка ниобиевоалюминиевого сплава. Успешное про­ведение внепечного алюмотермического восстановления воз­можно в том случае, если температура процесса выше темпе­ратуры плавления А12о3 = 2030 °С) и металлической фазы (сплав Nb +10 % ai плавится при 2050 °С). При избыт­ке алюминия в шихте 30 - 40 % сверх стехиометрического количества температура процесса достигает ~2150-2200 С. Вследствие быстрого протекания восстановления превышение температуры примерно на 100-150 С по сравнению с темпе­ратурами плавления шлаковой и металлической фаз достаточ­но для обеспечения их разделения. При указанном выше из­бытке алюминия в шихте получают сплав ниобия с 8-10 % алюминия при реальном извлечении ниобия 98-98,5 %.

Алюминотермическое восстановление проводят в стальном тигле с набивной футеровкой из прокаленных оксидов магния или алюминия. Для удобства выгрузки продуктов плавки ти­гель делают разъемным. Через стенки вводят контакты для подвода электрического тока (20 В, 15 А) к запалу в виде нихромовой проволоки, помещенной в шихту. Другой возмож­ный вариант - проведение процесса в массивном разъемном медном тигле, у стенок которого образуется гарниссажный защитный слой.

Смесь тщательно высушенного Nb2o5 и алюминиевого поро­шка крупностью ~100 мкм загружают в тигель. Целесообразно для исключения контакта с воздухом помещать тигель в ка­меру, заполненную аргоном.

После включения запала реакция протекает быстро по всей массе шихты. Полученный слиток сплава дробят на кус­ки и подвергают вакуумтермической обработке при 1800-2000 С в печи с графитовым нагревателем при оста­точном давлении ~0,13 Па с целью удаления большей части алюминия (до его содержания 0,2 %). Затем проводят рафи­нировочную плавку в электронно-лучевой печи, получая слитки ниобия высокой чистоты с содержанием примесей, %: А1 < 0,002; С 0,005; Си < 0,0025; Fe < 0,0025; Mg, Mn, Ni, Sn < 0,001; N 0,005; О < 0,010; Si < 0,0025; Ті < < 0,005; V < 0,0025.

Принципиально возможно алюминотермическое получение тантала, однако процесс несколько сложней. Удельный теп­ловой эффект реакции восстановления 895 кДж/кг шихты. Вследствие высокой температуры плавления тантала и его сплавов с алюминием для выплавки слитка в шихту вводят оксид железа (из расчета получения сплава с 7-7,5 % желе­за и 1,5 % алюминия), а также подогревающую добавку - хлорат калия (бертолетову соль). Тигель с шихтой помещают в печь. При 925 С начинается самопроизвольная реакция. Извлечение тантала в сплав около 90 %.

После вакуумтермической обработки и электронно-лучевой плавки слитки тантала имеют высокую чистоту, сравнимую с приведенной выше для ниобия.

Получение тантала и ниобия восстановлением из их хлоридов водородом

Разработаны различные способы восстановления тантала и ниобия из их хлоридов: восстановление магнием, натрием и водородом. Наиболее перспективны некоторые варианты вос­становления водородом, в частности рассмотренный ниже способ восстановления паров хлоридов на нагретых подлож­ках с получением прутка компактного металла.

На рис. 30 приведена схема установки для получения тантала восстановлением паров ТаС15 водородом на тантало­вой ленте, нагретой до 1200-1400 °С. Пары ТаСІ5 в смеси с водородом поступают из испарителя в реактор, в центре ко­торого находится танталовая ленты, нагреваемая прямым пропусканием электрического тока до заданной температуры. Для равномерного распределения паро-газовой смеси по дли­не ленты и обеспечения перпендикулярного к ее поверхности потока вокруг ленты установлен экран из нержавеющей стали с отверстиями. На нагретой поверхности происходит ре­акция:

ТаС15 + 2,5 Н2 = Та + 5 HCl; AG°m к = -512 кДж. (2.31)

Рис. 30. Схема установки для восстановления пентахлорида тантала водородом: 1 - фланец реактора; 2 - изолированный электроподвод; 3 - зажимные контакты; 4 - конденсатор для непрореагировавшего хлорида; 5 - танталовая лента; 6 - экраи с отверстиями,- 7 - корпус реактора; 8 - нагреватель реактора; 9 - обо­греваемый ротаметр; 10 - игольчатый вентиль; 11 - электропечь испарителя; 12 - испаритель пентахлорида тантала; 13 - ротаметр для водорода

Оптимальные условия осаждения тантала: температура ленты 1200-1300 °С, концентрация ТаСІ5 в газовой смеси ~ 0,2моля/моль смеси. Скорость осаждения в этих усло­виях равна 2,5-3,6 г/(см2 ч) (или 1,5-2,1 мм/ч), Таким образом, за 24 ч получают пруток чистого тантала со сред­ним диаметром 24-25 мм, который может быть прокатан в лист, использован для переплавки в электронно-лучевой пе­чи или превращен в высокочистые порошки (путем гидрирова­ния, измельчения и дегидрирования порошка). Степень пре­вращения хлорида (прямое извлечение в покрытие) составля­ют 20-30 %. Непрореагировавший хлорид конденсируют и сно­ва используют. Расход электроэнергии равен 7-15 кВт ч на 1 кг тантала в зависимости от принятого режима.

Водород после отделения паров НСІ поглощением водой может быть возвращен в процесс.

Описанным способом можно получать также прутки ниобия. Оптимальные условия осаждения ниобия: температура ленты 1000-1300 С, концентрация пентахлорида 0,1-0,2 моля/моль газовой смеси. Скорость осаждения металла равна 0,7-1,5 г/(см2-ч), степень превращения хлорида в металл 15-30%, расход электроэнергии 17-22 кВт*ч/кг металла. Процесс для ниобия ослажняется тем, что часть NbCl5 вос­станавливается в объеме реактора на некотором расстоянии от накаленной ленты до нелетучего NbCl3, осаждающегося на стенках реактора.

Электролитический способ получения тантала

Тантал и ниобий нельзя выделить электролизом из водных растворов. Все разработанные процессы основаны на элект­ролизе расплавленных сред.

В промышленной практике метод применяют для получения тантала. Так, на протяжении ряда лет электролитический метод тантала использовала фирма "Фенстил" (США), часть производимого тантала в Японии в настоящее время получают электролизом. Широкие исследования и про­мышленные испытания метода проведены в СССР.

Метод электролитического получения тантала подобен ме­тоду получения алюминия.

Основой электролита служит расплав солей K2TaF7 - KF - - КС1, в котором растворен оксид тантала Та205. Применение электролита, содержащего лишь одну соль - K2TaF7, практи­чески невозможно вследствие непрерывного анодного эффекта при использовании графитового анода. Электролиз возможен в ванне, содержащей K2TaF7, КС1 и NaCl. Недостаток этого электролита - накопление в нем в процессе электролиза фтористых солей, что приводит к снижению критической плотности тока и требует корректировки состава ванны. Этот недостаток устраняется введением в электролит Та205. Результатом электролиза в этом случае является электроли­тическое разложение оксида тантала с выделением на катоде тантала, а на аноде кислорода, реагирующего с графитом анода с образованием С02 и СО. Кроме того, введение в со­левой расплав Та205 улучшает смачивание расплавом графи­тового анода и повышает величину критической плотности тока.

Выбор состава электролита базируется на данных иссле­дований тройной системы K2TaF7-KCl-KF (рис.31). В этой системе установлены две двойные соли K2TaF7 KF (или KjTaFg) и K2TaF7 КС1 (или K3TaF7Cl), две тройные эвтекти­ки Еі и Е2, плавящиеся при 580 и 710 С соответственно, и перитектическая точка Р при 678 °С. При введении Та205 в расплав он взаимодействует с фторотанталатами с образова­нием оксофторотанталата:

3K3TaF8 + Ta2Os + 6KF = 5K3TaOF6. (2.32)

Аналогично протекает реакция с K3TaF7Cl. Образование оксофторидных комплексов тантала обусловливает раствори­мость Та205 в электролите. Предельная растворимость зави­сит от содержания K3TaF8 в расплаве и соответствует сте­хиометрии реакции (2.32).

На основе данных о влиянии состава электролита на по­казатели электролиза (критическую плотность тока, выход по току, извлечение, качество танталового порошка) совет­скими исследователями предложен следующий оптимальный со­став электролита: 12,5 % (по массе) K2TaF7, остальное КС1 и KF в отношении 2:1 (по массе). Концентрация вводимого Ta2Os 2,5-3,5 % (по массе). В данном электролите при тем­пературах 700-800 °С при использовании графитового анода напряжение разложения оксофторидного комплекса 1,4 В, тогда как для KF и КС1 напряжения разложения равны ~3,4 В и ~4,6 В соответственно.

КС I K2TaF,-KCl KJaFf

Рис. 31. Диаграмма плавкости системы K2TaF7-KF-KCl

При электролизе на катоде происходит ступенчатый раз­ряд катионов Та5+:

Та5+ + 2е > Та3+ + Ъе * Та0.

Процессы на аноде можно представить реакциями: TaOF63" - Зе = TaFs + F" + 0; 20 + С = С02; С02 + С = 2СО; TaFj + 3F~ = TaF|~. Ионы TaF|~, реагируя с вводимым в расплав Ta2Os, обра­зуют вновь ионы TaOF|~. При температурах электролиза 700-750 °С в составе газов -95 % С02, 5-7 % СО; 0,2-

Среди испытанных в СССР конструкций электролизеров лучшие результаты были получены в тех, где катодом служит тигель из никеля (или сплава никеля с хромом), в центре

Рис.32. Схема электролизера для получения тантала:

1 - бункер с питателем подачи Та205; 2 - электромагнитный вибратор питателя; 3 - кронштейн с креплением для анода; 4 - полый графитовый анод с отверстия­ми в стенке; 5 - тигель-катод из нихрома; 6 - крышка; 7 - теплоизолирующий стакан; 8 - штурвал для подъема авода; 9 - пробка со стержнем для подвода тока

Которого расположен полый графитовый анод с отверстиями в стенках (рис. 32). Оксид тантала подают периодически ав­томатическим вибропитателем в полый анод. При таком спо­собе питания исключается механическое загрязнение катод­ного осадка нерастворившейся пятиокисью тантала. Газы удаляют через бортовой отсос. При температуре электролиза 700-720 С, непрерывном питании ванны Та205 (т. е. при ми­нимальном числе анодных эффектов), катодной плотности то­ка 30-50 А/дм2 и отношении DjDк = 2*4 прямое извлечение тантала составляет 87-93 %, выход по току 80 %.

Электролиз ведут до заполнения катодным осадком 2/3 полезного объема тигля. По окончании электролиза анод поднимают и электролит вместе с катодным осадком охлажда­ют. Применяют два способа обработки катодного продукта с целью отделения электролита от частиц танталового порош­ка: измельчение с воздушной сепарацией и вакуум-терми - ческую очистку.

Вакуум-термический способ, разработанный в СССР, со­стоит в отделении основной массы солей от тантала выплав­кой (вытапливанием) в атмосфере аргона с последующим уда­лением остатка испарением в вакууме при 900 С. Выплав­ленный и сконденсированный электролит возвращают на электролиз.

Та измельчением с воздушной сепарацией 30-70 мкм, а при использовании вакуум-термической обработки - 100-120 мкм.

Получение ниобия из оксифторидно-хлоридных электроли­тов, подобно танталу, не дало положительных разультатов вследствие того, что при разряде на катоде образуются низшие оксиды, загрязняющие металл. Выход по току низкий.

Для ниобия (а также для тантала) перспективны бескис­лородные электролиты. Пентахлориды ниобия и тантала рас­творяются в расплавленных хлоридах щелочных металлов с образованием комплексных солей A/eNbCl6 и MeTaCl6. При электролитическом разложении этих комплексов на катоде выделяются крупнокристаллические осадки ниобия и тантала, а на графитовом аноде - хлор.

0,145 нм, ионные радиусы (в скобках указано координац. число) Nb 2+ 0,085 нм (6), Nb 3+ 0,086 нм (6), Nb 4+ 0,082 нм (6), 0,092 нм (8), Nb 5 + 0,062 нм (4), 0,078 нм (6), 0,083 нм (7), 0,088 нм (8).

Содержание в земной коре 2 . 10 -3 % по массе. Встречается в природе обычно вместе с Та. Наиб. важные минералы -колумбит-танталит, пирохлор и лопарит. Колумбит-танталит (Fe,Mn)(Nb,Ta) 2 O 6 содержит 82-86% оксидов Nb и Та. При содержании ниобия выше, чем Та, минерал наз. колумбитом, при обратном соотношении - танталитом. Пирохлор (Na,Ca,Ce) 2 (Nb,Ti) 2 (OH,F)O 6 обычно содержит 37,5-65,6% Nb 2 O 5 ; лопарит (Na,Ce,Ca,SrXNb,Ti)O 3 -8-10% Nb 2 O 5 . Минералы ниобия слабо парамагнитны и радиоактивны из-за примесей U и Th.

Колумбит встречается в изверженных пегматитах, биотитах и щелочных гранитах, иногда-в россыпных месторождениях (Нигерия), его часто добывают как побочный продукт обогащения оловянных концентратов. Пирохлор содержится в карбонатитах, щелочных породах (Канада), нефелин-сиенитовых пегматитах, в элювиальных продуктах выветривания сиенито-карбонатитов (Бразилия). Крупные залежи лопарита имеются в СССР.

Общие мировые запасы ниобия (без СССР) оценивались (1980) в 18 млн. т, в пром. месторождениях-ок. 3,4 млн. т (из них 3,2 млн.т в Бразилии).

Свойства. Ниобий-блестящий серебристо-серый металл ; кри-сталлич. решетка объемноцентрир. кубическая типа a-Fe, а = 0,3294 нм, z = 2, пространств. группа Im3m; т. пл. 2477 °С, т. кип. ок. 4760 °С; плотн. 8,57 г/см 3 ; С 0 р 24,44Дж/(моль . К); DH 0 пл 31,0 кДж/моль (2477 °С), DH 0 возг 720кДж/моль (0 К), DH 0 исп 662 кДж/моль (4760 °С); S 0 298 36,27 ДжДмоль К); ур-ние температурной зависимости давления пара над жидким ниобием: lgр(Па) = 13,877-40169/T (2304 <= Т<= 2596 К); температурный коэф. линейного расширения 7,1 . 10 -6 К -1 (0-100 °С); теплопроводность 52,3 Вт/(м. К) при 20 °С и 65,2 Вт/(м. К) при 600 °С; r 1,522 . 10 -9 Ом. м при 0°С, температурный коэф. r 3,95 х х 10 -3 К -1 (0-100°С). Ниобий парамагнитен, уд. магн. восприимчивость + 2,28 . 10 -6 (18 °С). Т-ра перехода в сверхпрово-дящее состояние 9,28 К.

Чистый ниобий легко обрабатывается давлением на холоду; жаропрочен; s раст 342 МПа (20 °С) и 312 МПа (800 °С); относит. удлинение 19,2% (20 °С) и 20,7% (800 °С); твердость по Бринеллю 450 МПа для чистого металла и 750-1800 МПа для технического. Примеси H,N,C и О снижают пластичность ниоби\ и повышают его твердость . В хрупкое состояние ниобий переходит при т-рах от - 100 до - 200°С.

Химически ниобий довольно устойчив. В компактном виде начинает окисляться на воздухе выше 200 °С, давая ниобия оксиды , взаимод. с Сl 2 выше 200 °С, с F 2 и Н 2 -выше 250 °С (интенсивно с Н 2 -при 360 °C), с N 2 -вышe 400 °С, с С и углеводородами-при 1200-1600 °С. На холоду не раств. в царской водке , соляной и серной к-тах, не реагирует с HNO 3 , Н 3 РО 4 , НСlО 4 , водным р-ром NH 3 . Устойчив к расплавл. Li, Na, К, Sn, Pb, Bi, а также Hg. Раств. во фтористоводородной к-те, ее смесях с HNO 3 , в расплавл. NH 4 HF 2 и NaOH. Обратимо поглощает Н 2 , образуя твердый р-р внедрения (до 10 ат. % Н) и гидрид состава NbH x (x = 0,7-1,0) с ромбич. кристаллич. решеткой; для NbH 0,761 DH 0 обр - 74,0 кДж/моль ; р-римость водорода в ниобии меняется от 104 см 3 /г при 20 °С до 4,0 см 3 /г при 900 °С, выше 1000 °С Н 2 практически не раств. в ниобии. Гидриды образуются также на первых стадиях растворения ниобия во фтористоводородной к-те, ее смеси с HNO 3 и расплаве NH 4 HF 2 , а также при электролизе к-т с катодом из ниобия (таким путем получен NbH 2,00). Гидрирование ниобия и дегидрирование при нагр. используют для получения мелкодисперсного металла .

При взаимодействии ниобия с С образуется одна из трех фаз: твердый р-р С в металле , Nb 2 C или NbC. Твердый р-р содержит 2 ат. % С при 2000 °С; р-римость С в ниобии резко падает с понижением т-ры. К а р б и д Nb 2 C образует три полиморфные модификации: до 1230 °С устойчива ромбич. a-фаза (пространств. группа Pbcn), при 1230°С она превращ. в гексагoн. b-фазу (пространств. группа Р6 3 22), к-рая при 2450 °С переходит в др. гексагoн. -g-фазу (пространств. группа P6 3 /mmc); т. пл. ок. 2990 °С (инконгруэнтно, с выделением твердого NbС x). Для a-Nb 2 C: C 0 p 63,51 Дж/(моль . К); DH 0 обр - 188 кДж/моль ; S 0 298 64,10 ДжДмоль. К); т-ра перехода в сверхпроводящее состояние 9,2 К. Карбид NbC-кристаллы серого или серо-коричневого цвета, область гомогенности от NbC 0,70 до NbC 1,0 ; при 377 °С наблюдается полиморфный переход, высокотемпературная кубич. фаза (а = 0,4458 нм, пространств. группа Рт3т, плотн. 7,81 г/см 3) инконгруэнтно плавится ок. 3390 °С; DH 0 обр - 135 кДж/моль ; S 0 298 35,4 ДжДмоль К); т-ра перехода в сверхпроводящее состояние 12,1 К. Фаза NbC 0,80 имеет т. пл. ~ 3620 °С. NbC образует твердые р-ры с ТаС, TiC, ZrC и др. В пром-сти NbC получают взаимод. Nb 2 O 5 с сажей ок. 1800 °С в атмосфере Н 2 ; м.б. также получен из элементов или нагреванием летучих галогенидов ниобия в атмосфере углеводородов до 2300-2900 °С.

В системе Nb-N образуются: твердый р-р внедрения азота в ниобии (a-фаза), н и т р и д ы Nb 2 N (гексагон. р-фа-за) и NbN (кубич. d- и гексагон. q-фазы) и еще неск. фаз. Р-римость N 2 в ниобии при атм. давлении описывается ур-нием с = 180ехр(- 57300/RT) ат. % (1073 <= T<= 1873 К). b-Фаза гомогенна в области NbN 0,4 -NbN 0,5 ; для нее а = 0,3056 нм с = 0,4995 нм, пространств. группа Р6 3 /ттс- С 0 p 67 ДжДмоль. К); DH 0 обр - 249 кДж/моль ; S 0 298 79 ДжДмоль. К). Светло-серая с желтоватым блеском d-фаза гомогенна в области NbN 0,88 -NbN l,06 , для нее а = 0,4373-0,4397 нм, пространств. группа Fm3m. Для q-фа-зы: С 0 р 37,5 ДжДмоль. К), DH 0 oбр -234 кДж/моль , S 0 298 33,3 ДжДмоль К). Нитриды не раств. в соляной к-те, HNO 3 и H 2 SO 4 , при кипячении со щелочами выделяют NH 3 , при нагр. на воздухе окисляются. Т-ры перехода в сверхпроводящее состояние для NbN x с x = 0,80, 0,90, 0,93 и 1,00 равны соотв. 13,8, 16,0, 16,3 и 16,05 К. Нитриды получают нагреванием металла или гидрида ниобия в атмосфере N 2 или NH 3 до 1100-1800 °С или взаимод. летучих галогенидов ниобия с NH 3 . Известны карбо- (получают взаимод. Nb, N 2 или NH 3 с углеводородами выше 1200°С) и оксинитриды ниобия.

Получение. Ок. 95% ниобия получают из пирохлоровых, тан-талит-колумбитовых и лопаритовых руд . Руды обогащают гравитац. методами и флотацией , а также электромагн. или радиометрич. сепарацией , выделяя пирохлоровые и колум-битовые концентраты с содержанием Nb 2 O 5 до 60%.

Концентраты перерабатывают до феррониобия или техн. Nb 2 O 5 , реже-до NbCl 5 и K 2 NbF 7 (см. Ниобия галогениды). Металлический ниобий получают из Nb 2 O 5 , K 2 NbF 7 или NbCl 5 .

При произ-ве феррониобия смесь пирохлоровых концентратов с гематитом Fe 2 O 3 , порошкообразным Аl и добавками флюса загружают в вертикальные водоохлаждаемые стальные или медные реакторы и с помощью спец. запала инициируют экзотермич. р-ции: 3Nb 2 O 5 + 10Al6Nb + + 5Аl 2 О 3 ; Fe 2 O 3 + 2Аl2Fe + Al 2 O 3 . Затем сливают шлак, охлаждают и измельчают полученный сплав . Выход ниобия в слиток при массе загрузки концентрата до 18 т достигает 98%.

Техн. Nb 2 O 5 получают выщелачиванием Nb и Та из концентратов и шлаков оловянной плавки действием фтористоводородной к-ты с послед. очисткой и разделением Nb и Та экстракцией 100%-ным трибутилфосфатом , циклогекса-ноном, метилизобутилкетоном (реже-др. экстрагентами), реэкстракцией ниобия действием водного р-ра NH 4 F, осаждением из реэкстракта гидроксида Nb, его сушкой и прокаливанием.

По сульфатному способу концентраты обрабатывают H 2 SO 4 или ее смесью с (NH 4) 2 SO 4 при 150-300 °С, выщелачивают р-римые сульфаты водой , отделяют Nb и Та от Ti, разделяют и очищают Nb и Та экстракцией их фторидных или оксофторидных комплексов, выделяя затем Nb 2 O 5 .

Хлоридный способ предусматривает смешивание концентрата с коксом , брикетирование и хлорирование брикетов в шахтной печи при 700-800 °С или хлорирование непосредственно порошкообразного концентрата и кокса в солевом хлоридном расплаве на основе NaCl и КСl. Далее проводят отделение летучих хлоридов Nb и Та, их разделение и очистку ректификацией и раздельный гидролиз водой с прокаливанием осадка гидроксида ниобия. Иногда хлорируют феррониобий или отходы металла .

Восстанавливают Nb 2 O 5 до металла алюмино- или карбо-термически либо нагреванием смеси Nb 2 O 5 и NbC при 1800-1900 °С в вакууме . Применяют также натриетермич. восстановление K 2 NbF 7 , электролитич. восстановление Nb 2 O 5 или K 2 NbF 7 в расплаве K 2 NbF 7 и хлоридов щелочных металлов . Особо чистый металл или покрытия из ниобия на др. металлах получают восстановлением NbCl 5 водородом при т-рах выше 1000°С.

Порошкообразный ниобий брикетируют, спекают штабики и переплавляют их в вакууме в электродуговых или электроннолучевых печах . На начальных стадиях очистки применяют также

Стоит начать с того, что ниобий неразрывно связан с таким веществом, как тантал. Это даже несмотря на то что открыты эти материалы были не в одно и то же время.

Что такое ниобий

Что же на сегодняшний день известно о таком веществе, как ниобий? Он является химическим элементом, который располагается в 5 группе таблицы Менделеева, обладая атомным номером 41, а также атомной массой 92,9. Как и многие другие металлы, для этого вещества характерен серо-стальной блеск.

Одним из наиболее важных физических параметров этого его тугоплавкость. Именно благодаря этой характеристике применение ниобия стало широко распространено во многих отраслях промышленности. Температура плавления этого вещества - 2468 градусов по Цельсию, а температура кипения - 4927 градусов по Цельсию.

Химические свойства этого вещества также находятся на высоком уровне. Он характеризуется высоким уровнем устойчивости к воздействию отрицательных температур, а также к воздействию большинства агрессивных сред.

Производство

Стоит сказать о том, что наличие руды, которая содержит элемент Nb (ниобий), гораздо больше, чем той, что содержит тантал, но проблема заключается в скудности содержания самого элемента в этой руде.

Чаще всего для того, чтобы получить этот элемент, осуществляется процесс термического восстановления, в котором участвует алюминий или же кремний. В результате проведения этой операции получаются соединения феррониобий и ферротанталониобий. Стоит отметить, что получение металлического варианта этого вещества осуществляется с этой же руды, но при этом используется более сложная технология. Тигли из ниобия и другие полученные материалы характеризуются очень высокими эксплуатационными характеристиками.

Методы получения ниобия

В настоящее время одними из наиболее развитых направлений получения этого материала являются алюминотермическое, натриетермическое и карботермическое. Отличие между этими типами заключается также и в прекурсорах, которые используются для восстановления ниобия. Допустим, в натриетермическом способе используется K2NbF7. А вот, к примеру, при алюминотермическом способе применяется пятиокись ниобия.

Если говорить о карботермическом способе получения, то эта технология подразумевает под собой смешение Nb с сажей. Проходить этот процесс должен в высокотемпературной и водородной среде. В результате проведения этой операции будет получен карбид ниобия. Второй этап заключается в том, что водородная среда заменяется вакуумной, а температура сохраняется. В этот момент к карбиду ниобия добавляется его оксид и получается сам металл.

Важно отметить, что среди форм выпускаемого металла довольно распространен ниобий в слитках. Этот продукт предназначается для производства сплава на базе металла, а также других различных полуфабрикатов.

Также может выпускаться штабик этого материала, который разделяется на несколько категорий в зависимости от чистоты вещества. Меньше всего примесей содержится в штабике с маркировкой НБШ-00. Класс НБШ-0 характеризуется более высоким наличием таких элементов, как железо, титан и кремний тантала. Категория, которая обладает наиболее высоким показателем примесей, НБШ-1. Можно добавить, что у ниобия в слитках такой классификации не имеется.

Альтернативные способы производства

К альтернативным способам можно отнести бестигельную электроннолучевую зонную плавку. Этот процесс позволяет получать монокристаллы Nb. Тигли из ниобия производятся с использованием этого метода. Он относится к порошковой металлургии. Его применяют для того, чтобы сначала получить сплав этого материала, а после и его чистый образец. Наличие этого метода стало причиной тому, что довольно часто встречаются объявления о покупке ниобия. Этот способ позволяет использовать для получения чистого металла не саму руду, добыть которую довольно сложно, или же концентрат из нее, а вторичное сырье.

К еще одному альтернативному методу производства можно отнести прокат ниобия. Стоит отметить, что большинство различных фирм отдает предпочтение покупке именно прутьев, проволоке или листовому металлу.

Прокат и фольга

Фольга из этого материала представляет собой довольно распространенный полуфабрикат. Он является наиболее тонким листом проката этого вещества. Используется для производства некоторых изделий и деталей. Фольга из ниобия получается из чистого сырья путем холодного проката Nb слитков. Полученные изделия характеризуются такими показателями, как высокая устойчивость к коррозии, воздействию агрессивной среды, а также высокой температуры. Прокат ниобия и его слитков дает также такие характеристики, как стойкость изделия к износу, высокая пластичность, хорошая поддаваемость обработке.

Продукты, полученные таким образом, чаще всего используются в таких сферах деятельности, как авиастроение, ракетостроение, медицина (хирургия), радиотехника, электротехника, атомная энергетика, ядерная энергетика. Фольга из ниобия упаковывается в катушки и хранится в сухом, защищенном от попадания влаги месте, а также в защищенном месте от механического воздействия со стороны.

Применение в электродах и сплавах

Применение ниобия очень широко распространено. Он может использоваться, как хром и никель, в качестве материала, который входит в состав железного сплава, использующегося для производства электродов. Из-за того, что ниобий, как и тантал, способен образовывать сверхтвердый карбид, его часто применяют для производства сверхтвердых сплавов. Можно добавить, что в настоящее время пробуют при помощи этого материала улучшать свойства сплавов, полученных на основе

Так как ниобий является сырьем, способным создавать карбидные элементы, то он, как и тантал, применяется в качестве легирующей смеси при производстве стали. Стоит отметить, что долгое время применение ниобия в качестве примеси к танталу считалось отрицательным действием. Однако на сегодняшний день мнение изменилось. Было установлено, что Nb может выступать в качестве заменителя танталу, причем с большим успехом, так как из-за меньшей атомной массы можно использовать меньшее количество вещества, сохраняя все старые возможности и эффекты изделия.

Применение в электрической технике

Стоит подчеркнуть, что применение ниобия, как и его брата тантала, возможно в выпрямителях, благодаря тому, что они обладают свойством униполярной проводимости, то есть эти вещества пропускают электрически ток лишь в одном направлении. Возможно использование этого металла для создания таких устройств, как аноды, что используются в мощных генераторах и усилительных лампах.

Очень важно отметить, что применение ниобия дошло и до атомной энергетики. В этой отрасли изделия из этого вещества применяются в качестве конструкционных материалов. Это стало возможным, так как наличие Nb в деталях делает их устойчивыми к жару, а также придает им высокие качества химической стойкости.

Отличные физические характеристики этого металла привели к тому, что его довольно широко используют в ракетной технике, в реактивных самолетах, в газовых турбинах.

Производство ниобия в России

Если говорить о запасах этой руды, то всего насчитывается около 16 млн тонн. Наибольшее месторождение, занимающее примерно 70% всего объема, находится в Бразилии. На территории России же располагается около 25% запасов данной руды. Данный показатель считается значительной частью от всех запасов ниобия. Наибольшее месторождение этого вещества находится в Восточной Сибири, а также на Дальнем Востоке. На сегодняшний день на территории Российской Федерации добычей и производством этого вещества занимается компания Ловозерский ГОК. Можно заметить, что производством ниобия в России занималась также фирма "Стальмаг". Она разрабатывала татарское месторождение этой руды, однако в 2010 году была закрыта.

Также можно добавить, что занимается производством оксида ниобия. Его они получают, перерабатывая лопаритовый концентрат. Это предприятие вырабатывает от 400 до 450 тонн этого вещества, большая часть из которого уходит на экспорт в такие страны, как США и Германия. Часть оставшегося оксида уходит на Чепецкий механический завод, который производит как чистый ниобий, так и его сплавы. Там располагаются значительные мощности, позволяющие производить до 100 тонн материала в год.

Металл из ниобия и его стоимость

Несмотря на то что сфера применения этого вещества довольно широка, основное предназначение - это космическая и ядерная промышленность. По этой причине Nb относится к стратегическим материалам.

Основные параметры, которые влияют на стоимость ниобия:

  • чистота сплава, большое количество примесей снижает цену;
  • форма поставки материала;
  • объемы поставляемого материала;
  • расположение пункта приема руды (разные регионы нуждаются в разном количестве элемента, а значит и цена на него отличается).

Примерный список цен на материал в Москве:

  • ниобий марки НБ-2 стоит в пределах 420-450 рублей за кг;
  • стружка ниобия стоит от 500 до 510 рублей за кг;
  • штабик марки НБШ-00 стоит от 490 до 500 рублей за кг.

Стоит отметить, что, несмотря на огромную стоимость этого товара, спрос на него только увеличивается.

Понравилась статья? Поделитесь ей
Наверх