Таблица ткань особенности строения функции что образует. Ткани

В любом живом или растительном организме ткань образуют сходные по происхождению и строению клетки. Любая ткань приспособлена для выполнения одной или сразу несколько важных для животного или растительного организма функций.

Виды тканей у высших растений

Выделяют следующие виды тканей растений:

  • образовательные (меристема);
  • покровные;
  • механические;
  • проводящие;
  • основные;
  • выделительные.

Все эти ткани имеют свои особенности строения и отличаются друг от друга выполняемыми функциями.

Рис.1 Ткани растений под микроскопом

Образовательная ткань растений

Образовательная ткань – это первичная ткань, из которой образуются все другие ткани растения. Она состоит из особых клеток, способных к многократному делению. Именно из этих клеток состоит зародыш любого растения.

Эта ткань сохраняется и у взрослого растения. Она располагается:

ТОП-4 статьи которые читают вместе с этой

  • внизу корневой системы и на верхушках стеблей (обеспечивает рост растения в высоту и развитие корневой системы) – верхушечная образовательная ткань;
  • внутри стебля (обеспечивает рост растения в ширину, его утолщение) – боковая образовательная ткань;

Покровная ткань растений

Покровная ткань относится к защитным тканям. Она необходима для того, чтобы защищать растение от резких перепадов температуры, от излишнего испарения воды, от микробов, грибов, животных и от всякого рода механических повреждений.

Покровные ткани растений образованы клетками, живыми и мертвыми, способными пропускать воздух, обеспечивая необходимый для роста растения газообмен.

Строение покровной ткани растений таково:

  • сначала расположена кожица или эпидерма, которая покрывает листья растения, стебли и наиболее уязвимые части цветка; клетки кожицы живые, эластичные, они защищают растение от излишней потери влаги;
  • далее находится пробка или перидерма, которая также располагается на стеблях и корнях растения (там, где образуется слой пробки, кожица отмирает); пробка защищает растение от неблагоприятных воздействий окружающей среды.

Также выделяют такой вид покровной ткани как корка. Эта самая прочная покровная ткань, пробка в данном случае образуется не только на поверхности, но и в глубине, причём верхние ее слои потихоньку отмирают. По сути, корка состоит из пробки и мёртвых тканей.

Рис.2 Корка – вид покровной ткани растения

Для дыхания растения в корке образуются трещинки, на дне которых располагаются специальные отростки, чечевички, через которые и происходит газообмен.

Механическая ткань растений

Механические ткани придают растению нужную ему прочность. Именно благодаря их наличию растение может выдерживать сильные порывы ветра и не ломаются под струями дождя и под тяжестью плодов.

Выделяют два основных вида механических тканей: лубяные и древесные волокна .

Проводящие ткани растений

Проводящая ткань обеспечивает транспортировку воды с растворёнными в ней минералами.

Эта ткань образует две транспортные системы:

  • восходящую (от корней к листьям);
  • нисходящую (от листьев ко всем остальным частям растений).

Восходящая транспортная система состоит из трахеид и сосудов (ксилема или древесина), причём сосуды более совершенные проводящие средства, чем трахеиды.

В нисходящих системах ток воды с продуктами фотосинтеза проходит по ситовидным трубкам (флоэма или луб).

Ксилема и флоэма образуют сосудисто-волокнистые пучки – «кровеносную систему» растения, которая пронизывает его полностью, соединяя в одно целое.

Основная ткань

Основная ткань или паренхима – является основой всего растения. В неё погружены все остальные виды тканей. Это живая ткань и выполняет она разные функции. Именно из-за этого выделяются разные её виды (информация о строении и функциях разных видов основной ткани представлена в таблице ниже).

Виды основной ткани Где располагается в растении Функции Строение
Ассимиляционная листья и другие зелёные части растения способствует синтезу органических веществ состоит из фотосинтезирующих клеток
Запасающая клубни, плоды, почки, семена, луковицы, корнеплоды способствует накапливанию необходимых для развития растения органических веществ тонкостенные клетки
Водоносная стебель, листья способствует накапливанию воды рыхлая ткань, состоящая из тонкостенных клеток
Воздухоносная стебель, листья, корни способствует проведению воздуха по растению тонкостенные клетки

Рис. 3 Основная ткань или паренхима растения

Выделительные ткани

Название данной ткани говорит о том, какую именно функцию она играет. Эти ткани способствуют насыщению плодов растений маслами и соками, а также способствуют выделению листьям, цветками и плодами особого аромата. Таким образом, выделяют два вида это ткани:

  • ткани внутренней секреции;
  • ткани наружной секреции.

Что мы узнали?

Учащимся 6 класса к уроку биологии нужно запомнить, что животные и растения состоят из множества клеток, которые, в свою очередь, упорядоченно выстраиваясь, образуют ту или иную ткань. Мы выяснили какие виды тканей существуют у растений – образовательная, покровная, механическая, проводящая, основная и выделительная. Каждая ткань выполняет свою, строго определённую функцию, защищая растение или обеспечивая доступ всех его частей к воде или воздуху.

Тест по теме

Оценка доклада

Средняя оценка: 3.9 . Всего получено оценок: 1585.

Тело многих живых организмов состоит из тканей. Исключениями являются все одноклеточные, а также некоторые многоклеточные, к примеру, к которым относятся водоросли, а также лишайники. В этой статье мы рассмотрим виды тканей. Биология изучает данную тему, а именно ее раздел - гистология. Название этой отрасли происходит от греческих слов "ткань" и "знание". Существуют очень многие виды тканей. Биология изучает и растительные, и животные. Они имеют существенные различия. биология изучает довольно давно. Впервые они описывались даже такими древними учеными, как Аристотель и Авиценна. Ткани, виды тканей биология продолжает изучать и дальше - в ХІХ веке их исследовали такие известные ученые, как Мольденгауэр, Мирбель, Гартиг и другие. С их участием были открыты новые типы совокупностей клеток, изучены их функции.

Виды тканей - биология

Прежде всего следует отметить, что ткани, которые свойственны растениям, не характерны для животных. Поэтому виды тканей биология может разделить на две большие группы: растительные и животные. Обе объединяют большое количество разновидностей. Их мы далее и рассмотрим.

Виды животных тканей

Начнем с того, что нам ближе. Так как мы относимся к царству Животные, наш организм состоит именно из тканей, разновидности которых сейчас будут описаны. Виды животных тканей можно объединить в четыре большие группы: эпителиальная, мышечная, соединительная и нервная. Первые три подразделяются на множество разновидностей. Только последняя группа представлена лишь одним типом. Далее рассмотрим все виды тканей, строение и функции, которые им характерны, по порядку.

Нервная ткань

Так как она бывает только одной разновидности, начнем с нее. Клетки данной ткани называются нейронами. Каждый из них состоит из тела, аксона и дендритов. Последние - это отростки, по которым электрический импульс передается от клетки к клетке. Аксон у нейрона один - это длинный отросток, дендритов несколько, они более мелкие, чем первый. В теле клетки находится ядро. Кроме того, в цитоплазме расположены так называемые тельца Ниссля - аналог эндоплазматического ретикуллума, митохондрии, которые вырабатывают энергию, а также нейротрубочки, которые участвуют в проведении импульса от одной клетки к другой.

В зависимости от своих функций нейроны разделяются на несколько типов. Первый вид - сенсорные, или афферентные. Они проводят импульс от органов чувств к головному мозгу. Второй тип нейронов - ассоциативные, или переключающие. Они анализируют информацию, которая поступила от органов чувств, и вырабатывают ответный импульс. Такого виды нейроны находятся в головном и спинном мозге. Последняя разновидность - двигательные, или афферентные. Они проводят импульс от ассоциативных нейронов к органам. Также в нервной ткани есть межклеточное вещество. Оно выполняет очень важные функции, а именно обеспечивает фиксированное расположение нейронов в пространстве, участвует в выведении из клетки ненужных веществ.

Эпителиальная

Это такие виды тканей, клетки которых плотно прилегают друг к другу. Они могут иметь разнообразную форму, но всегда расположены близко. Все различные виды тканей данной группы имеют сходство и в том, что межклеточного вещества в них мало. Оно в основном представлено в виде жидкости, в некоторых случаях его может и не быть. Это виды тканей организма, которые обеспечивают его защиту, а также выполняют секреторную функцию.

Данная группа объединяет несколько разновидностей. Это плоский, цилиндрический, кубический, сенсорный, реснитчатый и железистый эпителий. Из названия каждого можно понять, из клеток какой формы они состоят. Разного типы эпителиальные ткани отличаются и своим расположением в организме. Так, плоский выстилает полости верхних органов пищеварительного тракта - ротовой полости и пищевода. Цилиндрический эпителий находится в желудке и кишечнике. Кубический можно найти в почечных канальцах. Сенсорный выстилает полость носа, на нем находятся специальные ворсинки, обеспечивающие восприятие запахов. Клетки реснитчатого эпителия, как понятно из его названия, обладают цитоплазматическими ресничками. Данная разновидность ткани выстилает дыхательные пути, которые находятся ниже носовой полости. Реснички, которые имеет каждая клетка, выполняют очистительную функцию - они в некоторой степени фильтруют воздух, который проходит по органам, укрытым этим видом эпителия. И последняя разновидность данной группы тканей - железистый эпителий. Его клетки выполняют секреторную функцию. Они находятся в железах, а также в полости некоторых органов, таких как желудок. Клетки данного вида эпителия вырабатывают гормоны, желудочный сок, молоко, кожное сало и многие другие вещества.

Мышечные ткани

Данная группа подразделяется на три вида. Мышца бывает гладкая, поперечно-полосатая и сердечная. Все мышечные ткани похожи тем, что состоят из длинных клеток - волокон, в них содержится очень большое количество митохондрий, так как им необходимо много энергии для осуществления движений. выстилает полости внутренних органов. Сокращение таких мышц мы не можем контролировать сами, так как они иннервируются автономной нервной системой.

Клетки поперечно-полосатой мышечной ткани отличаются тем, что в них содержится больше митохондрий, чем в первой. Это объясняется тем, что им требуется больше энергии. Поперечно-полосатая мускулатура способна сокращаться значительно быстрее, чем гладкая. Из нее состоят скелетные мышцы. Они иннервируются соматической нервной системой, поэтому мы можем сознательно их контролировать. Мышечная сердечная ткань совмещает в себе некоторые характеристики первых двух. Она способна так же активно и быстро сокращаться, как поперечно-полосатая, но иннервируется автономной нервной системой, так же, как и гладкая.

Соединительные виды тканей и их функции

Все ткани этой группы характеризуются большим количеством межклеточного вещества. В некоторых случаях оно выступает в жидком агрегатном состоянии, в некоторых — в жидком, иногда — в виде аморфной массы. К этой группе принадлежат семь типов. Это плотная и рыхлая волокнистые, костная, хрящевая, ретикулярная, жировая, кровь. В первой разновидности преобладают волокна. Она расположена вокруг внутренних органов. Ее функции заключаются в придании им эластичности и их защите. В рыхлой волокнистой ткани аморфная масса преобладает над самими волокнами. Она полностью заполняет промежутки между внутренними органами, в то время как плотная волокнистая формирует только своеобразные оболочки вокруг последних. Она также играет защитную роль.

Костная и формируют скелет. Он выполняет в организме опорную функцию и отчасти защитную. В клетках и межклеточном веществе костной ткани преобладают в основном это фосфаты и соединения кальция. Обмен данных веществ между скелетом и кровью регулируют такие гормоны, как кальцитонин и паратиреотропин. Первый поддерживает нормальное состояние костей, участвуя в превращении ионов фосфора и кальция в органические соединения, запасаемые в скелете. А второй, наоборот, при недостатке этих ионов в крови провоцирует получение их из тканей скелета.

Кровь содержит много жидкого межклеточного вещества, оно называется плазмой. Ее клетки довольно своебразны. Они подразделяются на три типа: тромбоциты, эритроциты и лейкоциты. Первые отвечают за свертывание крови. Во время данного процесса формируется небольшой тромб, который предотвращает дальнейшую кровопотерю. Эритроциты отвечают за транспорт кислорода по организму и обеспечение им всех тканей и органов. На них могут находиться аглютиногены, которые существуют двух видов — А и В. В плазме крови возможно содержание аглютининов альфа или бета. Они являются антителами к аглютиногенам. По этим веществам и определяется группа крови. У первой группы на эритроцитах не наблюдается аглютиногенов, а в плазме находятся аглютинины двух видов сразу. Вторая группа обладает аглютиногеном А и аглютинином бета. Третья — В и альфа. В плазме четвертой нет аглютининов, но на эритроцитах находятся аглютиногены и А, и В. Если А встречается с альфа или В с бета, происходит так называемая реакция аглютинации, вследствие чего эритроциты погибают и образовываются тромбы. Такое может произойти, если перелить кровь несоответствующей группы. Учитывая, что при переливании используются только эритроциты (плазма отсеивается на одном из этапов обработки донорской крови), то человеку с первой группой можно переливать только кровь его же группы, со второй — кровь первой и второй группы, с третьей — первой и третьей группы, с четвертой — любой группы.

Также на эритроцитах могут находиться антигены D, что определяет резус-фактор, если они присутствуют, последний положительный, если отсутствуют — отрицательный. Лимфоциты отвечают за иммунитет. Они делятся на две основные группы: В-лимфоциты и Т-лимфоциты. Первые вырабатываются в костном мозге, вторые — в тимусе (железе, расположенной за грудиной). Т-лимфоциты подразделяются на Т-индукторы, Т-хелперы и Т-супрессоры. Ретикулярная соединительная ткань состоит из большого количества межклеточного вещества и стволовых клеток. Из них образуются клетки крови. Эта ткань составляет основу костного мозга и других органов кроветворения. Также существует клетки которой содержат в себе липиды. Она выполняет запасную, теплоизоляционную и иногда защитную функцию.

Как устроены растения?

Данные организмы, как и животные, состоят из совокупностей клеток и межклеточного вещества. Виды тканей растений мы и опишем дальше. Все они делятся на несколько больших групп. Это образовательные, покровные, проводящие, механические и основные. Виды тканей растений многочисленны, так как к каждой группе принадлежит несколько.

Образовательные

К ним относятся верхушечные, боковые, вставочные и раневые. Основная их функция — обеспечение роста растения. Они состоят из небольших клеток, которые активно делятся, а затем дифференцируются, образуя любой другой вид тканей. Верхушечные находятся на кончиках стеблей и корней, боковые — внутри стебля, под покровными, вставочные — в основаниях междоузлий, раневые — на месте повреждения.

Покровные

Они характеризуются толстыми клеточными стенками, состоящими из целлюлозы. Они играют защитную роль. Бывают трех видов: эпидерма, корка, пробка. Первая покрывает все части растения. Она может иметь защитный восковый налет, также на ней находятся волоски, устьица, кутикула, поры. Корка отличается тем, что не имеет пор, по всем остальным характеристикам она сходна с эпидермой. Пробка — это мертвые покровные ткани, которые формируют кору деревьев.

Проводящие

Эти ткани бывают двух разновидностей: ксилема и флоэма. Их функции — транспорт растворенных в воде веществ от корня к другим органам и наоборот. Ксилема сформирована из сосудов, образованных мертвыми клетками с твердыми оболочками, поперечных перепонок нет. Они транспортируют жидкость вверх.

Флоэма — ситовидные трубки — живые клетки, в которых нет ядер. Поперечные перепонки имеют крупные поры. С помощью данной разновидности растительных тканей вещества, растворенные в воде, транспортируются вниз.

Механические

Они также бывают двух типов: и склеренхима. Главная их задача — обеспечение прочности всех органов. Колленхима представлена живыми клетками с одеревеневшими оболочками, которые плотно прилегают друг к другу. Склеренхима состоит из вытянутых мертвых клеток с твердыми оболочками.

Основные

Как понятно из их названия, они составляют основу всех органов растения. Они бывают ассимиляционные и запасные. Первые находятся в листьях и зеленой части стебля. В их клетках находятся хлоропласты, которые отвечают за фотосинтез. В запасающей ткани накапливаются органические вещества, в большинстве случаев это крахмал.

Соединительная ткань – самая распространённая в организме, на нее приходится больше половины массы человека. Сама по себе не отвечает за работу систем организма, но оказывает вспомогательное действие во всех органах.

Особенности строения соединительной ткани

Выделяют три основных вида соединительной ткани, которые имеют различное строение и осуществляют определенные функции: собственно соединительная ткань, хрящевая и костная.

Разновидности соединительной ткани
Тип Характеристика
Плотная волокнистая - Оформленная, где хондриновые волокна идут параллельно;
- неформенная, где волокнистые структуры формируют сетку.
Рыхлая волокнистая Относительно клеток, межклеточного вещества больше, включает коллагеновые, эластические и ретикулярные волокна.
Ткани со специальными свойствами - Ретикулярная - формирует основу кроветворных органов, окружая созревающие клетки;
жировая – находится в брюшной области, на бедрах, ягодицах, запасая энергетические ресурсы;
- пигментная - есть в радужной оболочке глаза, коже сосков молочных желез;
- слизистая – одна из составляющих пупочного канатика.
Костная соединительная Состоит из остеобластов, они расположены внутри лакун, между которыми лежат кровеносные сосуды. Межклеточное пространство заполнено минеральными соединениями и хондриновыми волокнами.
Хрящевая соединительная Прочная, построена из хондробластов и хондроитина. Окружена надхрящницей, где идет формирование новых клеток. Выделяют гиалиновые хрящи, эластические и волокнистые.

Типы клеток соединительной ткани

Фибробласты – клетки, которые продуцируют промежуточное вещество. Они занимаются синтезом волокнистых образований и остальных составляющих соединительной ткани. Благодаря им идёт заживление ран и формирование рубцов, капсулирование инородных тел. Еще недифференцированные фибробласты овальной формы с большим количеством рибосом. Другие органоиды развиты слабо. Зрелые фибробласты имеют большие размеры и отростки.

Фиброциты — это окончательная форма развития фибробластов. Они имеют крыло-образное строение, цитоплазма включает ограниченное количество органоидов, процессы синтеза снижены.

Миофибробласты во время дифференцировки переходят в фибробласты. Они схожи с миоцитами, но в отличие от последних, обладают развитой ЭПС. Эти клетки часто встречаются в грануляционной ткани во время заживления порезов.

Макрофаги — размер тела варьирует от 10 до 20 микрометров, форма овальная. Среди органелл наибольшее количество лизосом. Плазмолема образует длинные отростки, благодаря им она захватывает инородные тела. Макрофаги служат для формирования врожденного и приобретенного иммунитета. Плазмоциты имеют овальное тело, иногда многоугольное. Эндоплазматическая сетка развита, отвечает за синтез антител.

Тканевые базофилы, или тучные клетки , располагаются в стенке пищеварительного тракта, матки, молочных железах, миндалинах. Форма тела разная, размеры от 20 до 35, иногда достигают 100мкм. Они окружены плотной оболочкой, внутри содержатся специфические вещества, которые имеют большое значение – гепарин и гистамин. Гепарин предотвращает сворачивание крови, гистамин воздействует на оболочку капилляров и увеличивает ее проницаемость, это ведет к просачиванию плазмы сквозь стенки кровеносного русла. Как следствие под эпидермисом формируются пузыри. Такое явление часто наблюдается при анафилаксии или аллергии.

Адипоциты — клетки, которые запасают липиды, необходимые для питания и энергетических процессов. Жировая клетка полностью наполнена жиром, который растягивает цитоплазму в тонкий шар, а ядро приобретает сплющенную форму.

Меланоциты содержат пигмент меланин, но сами они его не продуцирует, а только захватывают уже синтезированный эпителиоцитами.

Адвентициальные клетки недифференцированные, в дальнейшем могут трансформироваться в фибробласты или адипоциты. Встречаются возле капилляров, артерий, в виде плоскотелых клеток.

Вид клеток и ядра соединительной ткани отличается у ее подвидов. Так адипоцит при поперечном разрезе похож на кольцо с печаткой, где ядро выступают в роли печатки, а перстень — это тонкая цитоплазма. Ядро плазмоцита небольших размеров, расположено на периферии клетки, а хроматин внутри образует характерный рисунок — колесо со спицами.

Где находится соединительная ткань

Соединительная ткань имеет разнообразное расположение в организме. Так, коллагеновые волокнистые структуры формируют сухожилия, апоневрозы и фасциальные футляры.

Неоформленная соединительная ткань одна из компонентов dura mate (твердая оболочка мозга), сумки суставов, клапанов сердца. Эластические волокна, составляющие адвентицию сосудов.

Бурая жировая ткань наиболее развита у месячных детей, обеспечивает эффективную теплорегуляцию. Хрящевая ткань формирует носовые хрящи, гортанные, наружный слуховой ход. Костные ткани формируют внутренний скелет. Кровь – жидкая форма соединительной ткани, циркулирует по замкнутой кровеносной системе.

Функции соединительной ткани:

  • Опорная — формирует внутренний скелет человека, а также строму органов;
  • питательная — доставляет с током крови О 2 , липиды, аминокислоты, глюкозу;
  • защитная – отвечает за иммунные реакции путем образования антител;
  • восстановительная — обеспечивает заживление ран.

Отличие соединительной ткани от эпителиальной

  1. Эпителий покрывает мышечные ткани, основной составляющий слизистых оболочек, формирует наружный покров и обеспечивает защитную функцию. Соединительная ткань образует паренхиму органов, обеспечивает опорную функцию, отвечает за транспорт питательных веществ, играет большую роль в метаболических процессах.
  2. Неклеточные структуры соединительной ткани более развиты.
  3. Внешний вид эпителия сходный с ячейками, а клетки соединительной ткани имеют продолговатую форму.
  4. Разное происхождение тканей: эпителий походит из эктодермы и эндодермы, а соединительная ткань – из мезодермы.

Организм человека - сложная целостная саморегулирующаяся и самовозобновляющаяся система, состоящая из огромного количества клеток. На уровне клеток происходят все важнейшие процессы; обмен веществ, рост, развитие и размножение. Клетки и неклеточные структуры объединяются в ткани, органы, системы органов и целостный организм.

Ткани- это совокупность клеток и неклеточных структур (неклеточных веществ), сходных по происхождению, строению и выполняемым функциям. Выделяют четыре основные группы тканей: эпителиальные, мышечные, соединительные и нервную.

Эпителиальные ткани являются пограничными, так как покрывают организм снаружи и выстилают изнутри полые органы и стенки полостей тела. Особый вид эпителиальной ткани -железистый эпителий - образует большинство желез (щитовидную, потовые, печень и др.), клетки которых вырабатывают тот или иной секрет. Эпителиальные ткани имеют следующие особенности: их клетки тесно прилегают друг к другу, образуя пласт, межклеточного вещества очень мало; клетки обладают способностью к восстановлению (регенерации).

Эпителиальные клетки по форме могут быть плоскими, цилиндрическими, кубическими. По количеству пластов эпителии бывают однослойные и многослойные. Примеры эпителиев: однослойный плоский выстилает грудную и брюшную полости тела; многослойный плоский образует наружный слой кожи (эпидермис); однослойный цилиндрический выстилает большую часть кишечного тракта; многослойный цилиндрический - полость верхних дыхательных путей); однослойный кубический образует канальцы нефронов почек. Функции эпителиальных тканей; защитная, секреторная, всасывания.

Мышечные ткани обусловливают все виды двигательных процессов внутри организма, а также перемещение организма и его частей в пространстве. Это обеспечивается за счет особых свойств мышечных клеток - возбудимости и сократимости. Во всех клетках мышечных тканей содержатся тончайшие сократительные волоконца - миофибриллы, образованные линейными молекулами белков - актином и миозином. При скольжении их относительно друг друга происходит изменение длины мышечных клеток.

Различают три вида мышечной ткани: поперечнополосатую, гладкую и сердечную (рис. 12.1). Поперечнополосатая (скелетная) мышечная ткань построена из множества многоядерных волокноподобных клеток длиной 1-12 см. Наличие миофибрилл со светлыми и темными участками, по-разному преломляющих свет (при рассмотрении их под микроскопом), придает клетке характерную поперечную исчерченность, что и определило название этого вида ткани. Из нее построены все скелетные мышцы, мышцы языка, стенок ротовой полости, глотки, гортани, верхней части пищевода, мимические, диафрагма. Особенности поперечнополосатой мышечной ткани: быстрота и произвольность (т. е. зависимость сокращении от воли, желания человека), потребление большого количества энергии и кислорода, быстрая утомляемость.

Рис. 12.1 . Виды мышечной ткани: а - поперечнополосатая; 6 - сердечная; в - гладкая.

Сердечная ткань состоит из поперечно исчерченных одноядерных мышечных клеток, но обладает иными свойствами. Клетки расположены не параллельным пучком, как скелетные, а ветвятся, образуя единую сеть. Благодаря множеству клеточных контактов поступающий нервный импульс передается от одной клетки к другой, обеспечивая одновременное сокращение, а затем расслабление сердечной мышцы, что позволяет ей выполнять насоснуюфункцию.

Клетки гладкой мышечной ткани не имеют поперечной ис-черченности, они веретеновидные, одноядерные, их длина около 0,1 мм. Этот вид ткани участвует в образовании стенок трубко-образных внутренних органов и сосудов (пищеварительного тракта, матки, мочевого пузыря, кровеносных и лимфатических сосудов). Особенности гладкой мышечной ткани: непроизвольность и небольшая сила сокращений, способность к длительному тоническому сокращению, меньшая утомляемость, небольшая потребность в энергии и кислороде.

Соединительные ткани (ткани внутренней среды) объединяют группы тканей мезодермального происхождения, очень различных по строению и выполняемым функциям. Виды соединительной ткани: костная, хрящевая, подкожная жировая клетчатка, связки, сухожилия, кровь, лимфа и др. Общей характерной чертой строения этих тканей является рыхлое расположение клеток, отделенных друг от друга хорошо выраженным межклеточным веществом, которое образовано различными волокнами белковой природы (коллагеновыми, эластическими) и основным аморфным веществом.

У каждого вида соединительной ткани особое строение межклеточного вещества, а следовательно, и разные обусловленные им функции. Например, в межклеточном веществе костной ткани располагаются кристаллы солей (преимущественно соли кальция), которые и придают костной ткани особую прочность. Поэтому костная ткань выполняет защитную и опорную функции.

Кровь- разновидность соединительной ткани, у которой межклеточное вещество жидкое (плазма), благодаря чему одной из основных функций крови является транспортная (переносит газы, питательные вещества, гормоны, конечные продукты жизнедеятельности клеток и др.).

Межклеточное вещество рыхлой волокнистой соединительной ткани, находящейся в прослойках между органами, а также соединяющей кожу с мышцами, состоит из аморфного вещества и свободно расположенных в разных направлениях эластических волокон. Благодаря такому строению межклеточного вещества кожа подвижна. Эта ткань выполняет опорную, защитную и питательную функции.

Нервная ткань, из которой построены головной и спинной мозг, нервные узлы и сплетения, периферические нервы, выполняет функции восприятия, переработки, хранения и передачи ин-

формации, поступающей как из окружающей среды, так и от органов самого организма. Деятельность нервной системы обеспечивает реакции организма на различные раздражители, регуляцию и координацию работы всех его органов.

Основными свойствами нервных клеток -нейронов, образующих нервную ткань, являются возбудимость и проводимость. Возбудимость - это способность нервной ткани в ответ на раздражение приходить в состояние возбуждения, а проводимость - способность передавать возбуждение в форме нервного импульса другой клетке (нервной, мышечной, железистой). Благодаря этим свойствам нервной ткани осуществляется восприятие, проведение и формирование ответной реакции организма на действие внешних и внутренних раздражителей.

Нервная клетка, или нейрон, состоит из тела и отростков двух видов (рис. 12.2). Тело нейрона представлено ядром и окружающей его областью цитоплазмы. Это метаболический центр нервной клетки; при его разрушении она погибает. Тела нейронов располагаются преимущественно в головном и спинном мозге, т. е. в центральной нервной системе (ЦНС), где их скопления образуют серое вещество мозга. Скопления тел нервных клеток за пределами ЦНС формируют нервные узлы, или ганглии.

Короткие, древовидно ветвящиеся отростки, отходящие от тела нейрона, называются дендритами. Они выполняют функции восприятия раздражения и передачи возбуждения в тело нейрона.

Рис. 12.2 . Строение нейрона: 1 - дендриты; 2 - тело клетки; 3 - ядро; 4 - аксон; 5 - миелиновая оболочка; б - ветви аксона; 7 - перехват; 8 - неврилемма.

Самый мощный и длинный (до 1 м) неветвящийся отросток называется аксоном, или нервным волокном. Его функция состоит в проведении возбуждения от тела нервной клетки к концу аксона. Он покрыт особой белой липидной оболочкой (миелином), выполняющей роль защиты, питания и изоляции нервных волокон друг от друга. Скопления аксонов в ЦНС образуют белое вещество мозга. Сотни и тысячи нервных волокон, выходящих за пределы ЦНС, при помощи соединительной ткани объединяются в пучки - нервы, дающие многочисленные ответвления ко всем органам.

От концов аксонов отходят боковые ветви, заканчивающиеся расширениями - аксоппыми окончаниями, или терминалями. Это зона контакта с другими нервными, мышечными или железистыми метками. Она называется синапсом, функцией которого является передача возбуждения. Один нейрон через свои синапсы может соединяться с сотнями других клеток.

По выполняемым функциям различают нейроны трех видов. Чувствительные (центростремительные) нейроны воспринимают раздражение от рецепторов, возбуждающихся под действием раздражителей из внешней среды или из самого организма человека, и в форме нервного импульса передают возбуждение с периферии в ЦНС.Двигательные (центробежные) нейроны посылают нервный сигнал из ЦНС мышцам, железам, т. е. на периферию. Нервные клетки, воспринимающие возбуждение от других нейронов и передающие его также нервным клеткам, - это вставочные нейроны, или интернейроны. Они располагаются в ЦНС. Нервы, в состав которых входят как чувствительные, так и двигательные волокна, называются смешанными.

Тканью называется группа клеток, сходных по происхождению, строению и приспособленных к выполнению определенных функций. Ткани возникли у высших растений в связи с выходом их на сушу и наибольшей специализации достигли у покрытосеменных. Важнейшими тканями растений являются образовательные , покровные , проводящие , механические и основные . Они могут быть простыми и сложными. Простые ткани состоят из одного типа клеток (например, колленхима), а сложные - из разных (например, эпидерма, ксилема, флоэма и др.).

Образовательные ткани , или меристемы , участвуют в образовании всех постоянных тканей растения. Главной особенностью клеток меристемы является способность к постоянному делению и дифференциации, т. е. превращению в клетки постоянных тканей. Однородные, плотно сомкнутые живые тонкостенные меристематические клетки заполнены густой цитоплазмой, имеют крупное ядро и мелкие вакуоли.

По происхождению меристемы бывают первичные и вторичные . Первичная меристема составляет зародыш семени, а у взрослого растения сохраняется на кончике корней и верхушках побегов (в почках), что делает возможным их нарастание в длину. Дальнейшее разрастание корня и стебля по диаметру обеспечивается вторичными меристемами - камбием и феллогеном.

По расположению в теле растения различают верхушечные (апикальные), боковые (латеральные), вставочные (интеркалярные) и раневые (травматические) меристемы.

Покровные ткани располагаются на поверхности всех органов растения. Они выполняют главным образом защитную функцию - защищают растения от механических повреждений, проникновения микроорганизмов, резких колебаний температуры, излишнего испарения и т. п. В зависимости от происхождения различают три группы покровных тканей - эпидермис, перидерму и корку.

Эпидермис (эпидерма, кожица) - первичная покровная ткань, расположенная на поверхности листьев и молодых зеленых побегов. Она состоит из одного слоя живых, плотно сомкнутых клеток, не имеющих хлоропластов. Оболочки клеток обычно извилистые, что обусловливает их прочное смыкание. Наружная поверхность клеток этой ткани часто одета кутикулой или восковым налетом, что является дополнительным защитным приспособлением. В эпидерме листьев и зеленых стеблей имеются устьица, которые регулируют водный и воздушный режим растения.

Перидерма , или пробка, - вторичная покровная ткань, сменяющая эпидермис у многолетних растений. Ее образование связано с деятельностью вторичной меристемы - феллогена (пробкового камбия), клетки которого делятся тангенциально и дифференцируются и центробежном направлении в пробку (феллему). а в центростремительном - в слой живых паренхимных клеток (феллодерму).

Клетки пробки пропитаны жироподобным веществом - суберином и не пропускают воду и воздух, поэтому содержимое клетки отмирает, и она заполняется воздухом. Многослойная пробка образует вокруг стебля своеобразный чехол, надежно предохраняющий растение от неблагоприятных воздействий окружающей среды. Для газообмена и транспирации живых тканей, лежащих под пробкой, в ней имеются особые образования - чечевички. Это разрывы в пробке, заполненные рыхло расположенными клетками.

Корка образуется у деревьев и кустарников на смену пробке. В более глубоко лежащих тканях коры закладываются новые участки феллогена, формирующие новые слои пробки. Вследствие этого наружные ткани изолируются от центральной части стебля, деформируются и отмирают. На поверхности стебля постепенно образуется комплекс мертвых тканей, состоящий из нескольких слоев пробки и отмерших участков коры. Толстая корка служит более надежной защитой расте нию, чем одна только пробка.

Проводящие ткани служат для передвижения веществ в растении и являются главной составной частью ксилемы и флоэмы.

Ксилема - это главная водопроводящая ткань высших сосудистых растений. Она также участвует в транспорте минеральных веществ и запасании питательных соединений, выполняет опорную функцию. В состав ксилемы входят трахеиды и трахеи (сосуды), древесинная паренхима и механическая ткань. Трахеиды представляют собой узкие, сильно вытянутые в длину мертвые клетки с заостренными концами и одревесневшими оболочками. Проникновение растворов из одной трахеиды в другую происходит путем фильтрации через поры - углубления, затянутые поровой мембраной. Ток жидкости по трахеидам медленный, так как поровая мембрана препятствует движению воды. Трахеиды встречаются у всех высших растений, а у большинства хвощей, плаунов, папоротников и голосеменных служат единственным проводящим элементом ксилемы. У покрытосеменных растений наряду с трахеидами имеются сосуды. Сосуды - это полые трубки, состоящие из отдельных члеников, расположенных друг над другом. В члениках на поперечных стенках образуются сквозные отверстия - благодаря чему скорость тока растворов по сосудам многократно увеличивается. Оболочки сосудов пропитываются лигнином и придают стеблю дополнительную прочность.

Флоэма проводит органические вещества, синтезированные в листьях, ко всем органам растения (нисходящий ток). Как и ксилема, она является сложной тканью н состоит из ситовидных трубок с кпеткамн-с путницами, лубяной паренхимы н лубяных волокон. Ситовидные трубки образованы живыми клетками, расположенными одна над другой. Их поверенные стенки пронизаны мелкими отверстиями, образующими как бы сито. Клетки ситовидных трубок лишены ядер, но содержат в центральной части цитоплазму, тяжи которой через сквозные отверстия в поперечных перегородках проходят в соседние клетки. Ситовидные трубки, как и осуды, проходят по всей длине растения. Клетки-спутницы соединены с члениками ситовидных трубок многочисленными плазмодесмами и, по-видимому, выполняют часть функций, утраченных ситовидными трубками (синтез ферментов, образование АТФ).

Ксилема и флоэма находятся в тесном взаимодействии друг с другом и образуют в органах растения особые комплексные группы - проводящие пучки.

Механические ткани обеспечивают прочность органов растений. Они составляют каркас, поддерживающий все органы растений, противодействуя их излому, сжатию, разрыву. Основными чертами строения клеток механических тканей, обеспечивающими их прочность и упругость, являются мощное утолщение и одревеснение их оболочек, тесное смыкание между клетками, отсутствие перфораций в клеточных стенках.

Механические ткани наиболее развиты в стебле, где они представлены лубяными и древесинными волокнами. В корнях механическая ткань сосредоточена в центре органа.

В зависимости от формы клеток, их строения, физиологического состояния и способа утолщения клеточных оболочек различают три вида механической ткани: колленхиму, склеренхиму, склереиды.

Колленхима представлена живыми паренхимными клетками с неравномерно утолщенными оболочками, делающими их особенно хорошо приспособленными для укрепления молодых растущих органов. Будучи первичными, клетки колленхимы легко растягиваются и практически не мешают удлинению той части растения, в которой находятся. Обычно колленхима располагается отдельными тяжами или непрерывным цилиндром под эпидермой молодого стебля и черенков листьев, а также окаймляет жилки в листьях двудольных.

Склеренхима состоит из вытянутых клеток с равномерно утолщенными, часто одревесневшими оболочками, содержимое которых отмирает на ранних стадиях. Оболочки склеренхимных клеток обладают высокой прочностью, близкой к прочности стали. Эта ткань широко представлена в вегетативных органах наземных растении и составляет их осевую опору.

Различают два типа склеренхимных клеток волокна и склереиды. Волокна - это длинные тонкие клетки, обычно собранные в тяжи или пучки (например, лубяные или древесинные волокна).

Склереиды - это округлые мертвые клетки с очень толстыми одревесневшими оболочками. Ими образованы семенная кожура, скорлупа орехов, косточка вишни, сливы, абрикоса; они придают мякоти груш характерный крупитчатый характер.

Основная ткань , или паренхима , состоит из живых, обычно тонкостенных клеток, которые составляют основу органов (откуда и название ткани). В ней размещены механические проводящие и другие постоянные ткани. Основная ткань выполняет ряд функций, в связи с чем различают ассимиляционную (хлоренхиму) , запасающую , воздухоносную (аэренхиму) и водоносную паренхиму .

Клетки ассимиляционной ткани содержат хлоропласта и выполняют функцию фотосинтеза. Основная масса этой ткани сосредоточена в листьях, меньшая часть - в молодых зеленых стеблях.

В клетках запасающей паренхимы откладываются белки, жиры, углеводы и другие вещества. Она хорошо развита в стеблях древесных растений, в корнеплодах, клубнях, луковицах, плодах и семенах. У растений пустынных местообитаний (кактусы, агавы, алоэ) и солончаков в стеблях и листьях имеется водоносная паренхима, служащая для запасания воды (например, у крупных экземпляров кактусов из рода карнегия в тканях содержится до 2-3 тыс. л воды). У водных и болотный растений развивается особый тип основной ткани - воздухоносная паренхима или аэренхима. Клетки аэренхимы образуют крупные воздухоносные межклетники, по которым воздух доставляется к тем частям растения, связь которых с атмосферой затруднена.

У животных различают четыре типа тканей: эпителиальную, соединительную, мышечную и нервную.

Эпителиальная ткань , или эпителий , обычно имеет вид пласта клеток, покрывающего тело животного или выстилающем его внутренние полости. Через слой покровного эпителия многих животных происходит газообмен между организмом и окружающей средой. В то же время он защищает животное от проникновения извне вредных веществ и микроорганизмов и предохраняет его от потери веществ, необходимых для его жизнедеятельности (например, воды). В некоторых органах клетки эпителия вырабатывают тот или иной секрет; эпителий, содержащий секреторные клетки, именуется железистым.

Клетки эпителия прилегают друг к другу плотно или между ними имеются щели, по которым циркулирует тканевая жидкость. Межклеточное вещество, как правило, неразвито. Клетки эпителия почти всегда имеют одно ядро.

Пласты эпителия слагаются из клеток различной формы. В зависимости от числа слоев клеток в пласте эпителий бывает однослойным и многослойным . По форме клеток однослойный эпителий подразделяют на плоский, кубический и цилиндрический. В многослойном эпителии клетки основного слоя имеют обычно кубическую или цилиндрическую форму, вышележащие клетки несколько уплощены, а поверхностные становятся плоскими. Нередко наружные клетки ороговевают и отмирают. У большинства беспозвоночных животных эпителий покровов выделяет на поверхность плотную оболочку - кутикулу.

Соединительная ткань участвует в образовании связок и прослоек между органами, а также скелета многих животных. Некоторые виды этой ткани (кровь, лимфа) осуществляют перенос веществ по всему телу. Строение различных видов соединительной ткани разнообразно Но все они сходны в том, что клетки их выделяют межклеточное (основное) вещество. В одних типах ткани оно мягкое и может содержать коллагеновые (дающие при вываривании клей) или эластичные волокна, расположенные беспорядочно, параллельно друг другу (в сухожилиях) или крест-накрест (в фасциях). В других типах соединительной ткани межклеточное вещество прочное и плотное. Различают следующие основные виды соединительной ткани:

  • рыхлая волокнистая ткань слагается из редко расположенных звездчатых клеток, переплетающихся волокон и тканевой жидкости, заполняющей промежутки между клетками и волокнами; обнаруживается обычно в прослойках между органами;
  • плотная волокнистая ткань состоит в основном из пучков коллагеновых волокон. Аморфного межклеточного вещества мало, немногочисленные клетки расположены между пучками волокон. Такая ткань образует связки, сухожилия, глубокие слои кожи позвоночных животных;
  • хрящевая ткань состоит из округлых или овальных клеток, лежащих в капсулах среди мощно развитого плотного и твердого межклеточного вещества, которое обычно слагается из переплетения тонких волокон и основной бесструктурной субстанции. Межклеточное вещество в этой ткани эластичное при надавливании, гибкое и его легко разрезать; в нем нет кровеносных сосудов. Хрящи входят в состав скелета многих животных;
  • костная ткань отличается тем, что ее межклеточное вещество из-за отложения солей кальция приобретает твердость и содержит гаверсовы каналы с кровеносными сосудами и нервами. Костные клетки (остеоциты) располагаются в основном концентрическими рядами вокруг гаверсовых каналов и связаны между собой плазматическими отростками. Костная ткань свойственна позвоночным животным. Эта ткань образует кости;
  • мышечная ткань - основной элемент мышц животных. Ее клетки способны к обратимому сокращению под действием разных раздражителей, что обусловливает движение животных. Мышечная ткань слагается из отдельных мышечных волокон, в которых расположены тончайшие сократительные волоконца - миофибриллы.

Различают три типа мышечной ткани: скелетную (или поперечнополосатую), сердечную и гладкую.

Сокращение скелетных мышц осуществляется произвольно через посредство соматических нервов, в отличие от сердечной и гладких мышц, управляемых вегетативной нервной системой. Как следует из названия, скелетные мышцы прикрепляются к костям скелета; сердечная мышца образует основную массу ткани сердца, а гладкие мышцы - мышечные слои внутренних органов (пищеварительного тракта, кровеносных сосудов, матки, мочевого пузыря и др.); у низших многоклеточных животных гладкая ткань образует всю массу их мышц.

Скелетные мышцы состоят из пучков, образуемых множеством многоядерных волокон диаметром от 0,01 до 0,1 мм и длиной от 1 до 40 мм. Эти волокна, в свою очередь, состоят из более тонких мышечных фибрилл. При световой микроскопии они имеют поперечную исчерченность заключающуюся в правильном чередовании светлых и темных дисков. Каждая мышечная фибрилла состоит в среднем из 2500 протофибрилл, представляющих собой удлиненные полимеризованные молекулы белков миозина и актина. При сокращении мышечных волокон актиновые нити вдвигаются в промежутки между толстыми миозиновыми нитями. Причиной «скольжения» является химическое взаимодействие между актином и миозином в присутствии ионов Ca 2+ и АТФ.

Сердечная мышца также состоит из волокон, но обладает иными свойствами, что связано с ее структурой. Ее волокна расположены не параллельным пучком, а ветвями. Кроме того, соседние волокна соединены между собой конец в конец. Благодаря этому все волокна сердечной мышцы образуют единую сеть, хотя каждое волокно заключено в отдельную мембрану. Между волокнами, соединенными своими концами, образуется множество контактов, которые позволяют нервному импульсу поступать от одного волокна к другому. Вся сердечная мышца сокращается одновременно и также одновременно расслабляется.

Клетки гладких мышц лишены поперечной исчерченности, так как у них отсутствует упорядоченное расположение нитей актина и миозина. Клетки гладких мышц веретенообразные, длиной около 0,1 мм, с одним ядром в центре.

Источником энергии для мышечного сокращения служат АТФ, креатинфосфат, а также - при интенсивной мышечной работе - запасы углеводов в форме гликогена и жирные кислоты.

Скелетные мышцы произвольного действия способны к быстрым сокращениям, развивают большую мощность, потребляют при работе много энергии, быстро утомляются. В отличие от скелетных, гладкие мышцы непроизвольного действия обладают медленной реакцией, способны к поддержанию длительного сокращения с очень малой затратой энергии.

Следует дополнить, что скелетные мышцы позвоночных состоят из волокон по меньшей мере двух типов - «быстрых» и «медленных». «Быстрые» волокна содержат меньше миоглобина и называются белыми, а «медленные», с большим количеством миоглобина, - красными. Мышца может состоять только из «быстрых», только из «медленных» волокон или из тех и других.

Нервная ткань выполняет функции восприятия, переработки, хранения и передачи информации, поступающей как из окружающей среды, так и изнутри организма. Деятельность нервной системы обеспечивает реакцию организма на различные раздражения и координацию работы разных органов животных.

Понравилась статья? Поделитесь ей
Наверх